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Abstract

The simple modules with homogeneous characters are considered,
their dimension formulas are determined.

1 Introduction

Let (L,[p]) be a finite-dimensional restricted Lie algebra over an algebraically
closed field F , and M an L−module. If there exists a linear form χ ∈ L∗ =
HomF (L,F ) such that

Dpm−D[p]m = χ(D)pm

for D ∈ L and m ∈ M . We say that L−module M has character χ. From [7],
not every module has a character, but at least every simple module has one.
If M is an L−module with χ = 0, then we call M a restricted L−module.
If χ 6= 0, M is called a nonrestricted module.

Let L be the restricted Cartan type algebra over F of characteristic
p ≥ 3. Let χ ∈ L∗. Let L =

∑
i Li be the standard grading on L and
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put Li =
∑

j≥i Lj . The height of the character χ was defined by: ht(χ) =
min{i ≥ −1|χ(Li) = 0}.

In 1941, Chang [1] worked with the smallest Witt algebra W (1, 1) and
determined all the simple modules with arbitrary characters. Later, Strade
[6] gave proofs of many of Chang’s results in a different approach. Koreshkov
[4] studied the next smallest Witt algebra, W (2, 1).

Holmes [2] worked with the general Witt algebra W (n, 1), gave a uni-
form treatment of the three cases ht(χ) = −1, 0, 1 and classified all the
simple modules of the restricted Witt algebra W (n, 1). He also obtained
their dimension formulas. In [3], we classified all the simple modules of the
nonexceptional weights with height at most one for the other three types
algebras. Namely, special algebras, hamiltonian algebras and contact al-
gebras. Particularly, when the height of the character equals one, all the
weights are nonexceptional, in the sense that each simple module is induced
by a simple module of its maximal subalgebra.

Then in [9], all the simple modules with the exceptional weights for the
type S, H, K are classified. The character with height greater than one was
investigated in [10], in which the author proved that all the simple modules
with nonsingular or ∆ − invertible characters are induced by the simple
modules of their maximal subalgebras.

In the present work, the authors are working with singular homogeneous
characters with height greater than one. We show that all simple modules
for the Witt algebra with given characters are also induced by the sim-
ple modules of their maximal subalgebras. In addition, we determined the
dimension of these simple modules.

The paper is organized as follows. In Section 2, we define the restricted
Lie algebras of Cartan type. In Section 3, we give theorems about the sim-
plicity for the induced L−modules. Then we deduce corollaries particularly
for the homogenous characters. As an application, we work out the dimen-
sion formula of the simple modules for some homogeneous characters in both
Sections 4 and 5.

The research was initiated when the second author was visiting Auburn
University. He would like to express his gratitude to the Department of
Mathematics of Auburn University for the hospitality.

2 Preliminaries

In this section we describe the simple restricted Lie algebra of Cartan type,
drawing most of the notation and results from [7]. Fix n ∈ N and let
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a, b ∈ Zn. We write a 6 b if ai 6 bi for all 1 6 i 6 n and we write a < b
if a 6 b but a 6= b. If a, b ≥ 0, define

(
a
b

)
= Πi

(
ai
bi

)
, where

(
ai
bi

)
is the usual

binomial coefficient with the convention that
(
ai
bi

)
= 0 unless bi 6 ai. Set

C := {a ∈ Zn|0 6 a 6 τ}, where τ := (p − 1, . . . , p − 1). The divided
power algebra A = A(n, 1) is the associative F − algebra having F − basis
{x(a)|a ∈ C} and multiplication subject to the rule

x(a)x(b) =

{(
a+b
a

)
x(a+b), a + b 6 τ

0, otherwise.

(1) Given a ∈ Zn, set |a| =
∑

i ai. Defining Ak = 〈x(a)|a ∈ C, |a| = k〉
and Wk =

∑
j Ak+1Dj , we have the simple restricted Witt algebra W =

W (n, 1) = ⊕sW
i=−1Wi, where sW = n(p− 1)− 1 = |τ | − 1. W−1 =

∑n
i=1 FDi.

(2) Suppose n ≥ 3, we introduce the mappings

Dij :

{
A → W (n, 1),
f 7→ Dj(f)Di −Di(f)Dj .

Then the simple restricted special Lie algebra is

S = S(n, 1) = 〈Dij(f)|f ∈ A, 1 6 i < j 6 n〉.

S = ⊕sS
i=−1S ∩Wi is graded with sS = n(p− 1)− 2 = |τ | − 2. S−1 = W−1.

(3) Let r ∈ N and define

σ(i) =

{
1, 0 6 i 6 r,
−1, r < i 6 2r.

For 1 6 i 6 2r, put i′ = i + σ(i)r.
Define DH : A(2r, 1) → W (2r, 1) by means of

DH(f) :=
2r∑

j=1

σ(j)Dj(f)Dj′ ,

then by [7], H ′ = DH(A(2r, 1)) is a Lie subalgebra of W (2r, 1). Its subalge-
bra

H = H(2r, 1) = 〈DHx(a)|0 6 a < τ〉
is called the simple restricted hamiltonian Lie algebra. H is a graded sub-
algebra of W with length sH = n(p − 1) − 3 = |τ | − 3. Directly by the
definition, we have DHx(εi) = σ(i)Di′ . Hence we have H−1 = W−1.
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(4) Let r ∈ N and put n = 2r + 1, A = A(n, 1), W = W (n, 1). Define a
linear mapping DK : A → W by means of

DK(f) =
n∑

j=1

fjDj ,

where

fj = xjDn(f) + σ(j′)Dj′(f), j 6 2r, fn = 2f −
2r∑

j=1

σ(j)xjfj′ .

Define the Lie product 〈, 〉 on A(2r +1, 1) by 〈f, g〉 := DK(f)(g)− 2gDn(f).
Then A(2r+1, 1) is a Lie algebra, we denote this Lie algebra by K ′(2r+1, 1).
We define ‖a‖ = |a|+ an + 2 for a ∈ C. The vector spaces K ′(2r + 1, 1)i :=
〈x(a)|‖a‖ = i〉 define a gradation on K ′(2r + 1, 1).

The simple restricted contact Lie algebra is then

K = K(2r + 1, 1) =

{
K ′(2r + 1, 1), n + 3 6≡ 0 mod (p),
⊕a<τFx(a), n + 3 ≡ 0 mod (p).

Then we have K = ⊕i≥−2K(2r + 1, 1)i.
In this paper, we denote for the contact algebra K

D1 := x(ε1), . . . , Dn−1 := x(εn−1), Dn := 1

We let L− = L−1, if L = W,S,H, and L− = L−1 + L−2 if L = K.
We write Aut(L) for the group of restricted automorphisms of L (Φ:

L 7→ L is restricted provided that Φ(D[p]) = Φ(D)[p] for all D ∈ L). Let
Φ ∈ Aut(L) and let MΦ be an L−module having M as its underlying vector
space and L− action given by x ·m = Φ(x)m, for x ∈ L and m ∈ M , where
the action on the right is the given one. Then MΦ is simple if and only if M
is. Let L be a restricted Lie algebra, and M is an L−module with character
χ. It is easy to check that MΦ has character χΦ, where χΦ(x) = χ(Φ(x))
for x ∈ L. We have ht(χΦ) =ht(χ) by [2, 1.2]. Let θ : V 7→ U be a linear
transformation of vector spaces over F . If V = ⊕Vi and U = ⊕Ui, we say θ
is homogeneous provided θ(Vi) ⊆ Ui for each i.

Putting Aut∗(L) = {Φ ∈ Aut(L)|Φ is homogeneous } and Aut1(L) =
{Φ ∈ Aut(L)|(Φ − 1L)(Li) ⊆ Li+1 for each i}, then by [8, Theorem 2],
Aut(L) = Aut∗(L)nAut1(L).

Let Φ ∈ Aut(L) and χ ∈ L∗. Denote χ|L0 simply by χ|. For any simple
u(L0, χ|) − module M , denote the induced module u(L, χ) ⊗u(L0,χ|) M by
Zχ(M).
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Lemma 1
Zχ(M)Φ ∼= ZχΦ

(MΦ)

Proof. By the definition, ZχΦ
(MΦ) = u(L, χΦ) ⊗u(L0,χ|Φ) MΦ. Since

Zχ(M)Φ contains MΦ as an L0 − submodule, by the universal property,
there is L− homomorphism f :

ZχΦ
(MΦ) −→ Zχ(M)Φ,

such that f(
∑

Da ⊗ ma) =
∑

Da ⊗ f(ma). Then f is an epimorphism.
Since both sides have the same dimension, f is an isomorphism. 2

By the Lemma, we have Zχ(M) ∼= (ZχΦ
(MΦ))Φ

−1
. Then to study Zχ(M),

we may choose a representative in the AutW − orbit AutW · χ such that
χΦ is in a simpler form. We then work on ZχΦ

(MΦ). It follows from the
lemma that ZχΦ

(MΦ) is simple if and only if Zχ(M) is, and they have the
same dimension.

3 Two general theorems

Let h : A×B → F be a bilinear form, i.e., h satisfies the following

h(a1 + a2, b) = h(a1, b) + h(a2, b)

h(a, b1 + b2) = h(a, b1) + h(a, b2)

h(ka, b) = h(a, kb) = kh(a, b)

for a, ai ∈ A, b, bi ∈ B, k ∈ F . We denote

radLh = {x ∈ A|h(a,B) = 0}, radRh = {y ∈ B|h(A, y) = 0}.

Taking a basis of A: {u1, u2, . . . , um}, and that of B: {v1, v2, . . . , vn}, let
Cm×n =: (h(ui, vj))m×n, which is referred to as the matrix of h related to
the given bases. Denote r(A) the rank of a matrix A. It is easy to see that
r =: r(Cm×n) is invariant with different choice of the basis of A and B. By
linear algebra there exist g ∈ GL(m) and g′ ∈ GL(n) such that

gCg′ =
(

Ir 0
0 0

)
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Let (u′1, u
′
2, . . . , u

′
m) = (u1, u2, . . . , um)gT and (v′1, . . . , v

′
n) = (v1, . . . , vn)g′,

then

(h(u′i, v
′
j)) =

(
Ir 0
0 0

)
.

It follows that radLh = 〈u′r+1, . . . , u
′
m〉 and radRh = 〈v′r+1, . . . , v

′
n〉.

For each χ ∈ L∗, let I ⊆ L1+δLK be an ideal of L0 satisfying χ([I, I]) = 0.
Denote Lχ =: {x ∈ L0|χ([x, I]) = 0}. Obviously I ⊆ Lχ.

We define a skew-symmetric bilinear form B:

L0 × I −→ F
(x,y)−→χ([x,y])

.

Then we have radLB = Lχ. Let e1, . . . , et be a cobasis of Lχ in L0. By the
discussion above there exists f1, . . . , ft ∈ I, such that the matrix

χ((f1, . . . , ft)T (e1, . . . , et))

is invertible. In particular, we may choose {ei}t
i=1 and {fi}t

i=1 such that the
matrix is the unit matrix It.

Definition. Let L be a Lie algebra and M an L−module. P is a subspace
of L. If there is 0 6= v ∈ M such that x · v = 0 for all x ∈ P , then v is called
an invariant element of P in M , or simply a P − invariant.

By the definition, if v is a P − invariant, then any nonzero multiple of v also
is.

In the following, since u(L−, χ) ⊆ u(L, χ) is naturally an L0 − module
by Lie product action, we can define the invariants in u(L−, χ) for any
subspace P ⊆ L0. If each P − invariant in u(L−, χ) is in the form c · 1, for
some 0 6= c ∈ F , we say that P has only trivial invariants in u(L−, χ).

Lemma 2 ([10, Prop. 2.3]) Let L be a simple restricted Cartan type Lie
algebra. Assume χ ∈ L∗ and ht(χ) = h, 2 6 h 6 sL − δLK . (i1, i2, . . . , in)
is a rearrangement of the sequence (1, 2, . . . , n). Fixing r with 1 6 r 6 n, if
there exist elements g1, g2, . . . , gr ∈ Lk, for some k ≥ h, such that the matrix

χ(




g1

g2
...
gr


 · (Di1 , Di2 , . . . , Din))

is in the form (Ar|0), where Ar = (aij) is an invertible r × r matrix, then
every simple u(Lh−1, χ)−submodule of Zχ(M) is 1−dimensional. Moreover,
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if we denote it by Fv, where v =
∑
|s|6a Ds ⊗ u(s), then for all s, |s| = a,

we have si1 = · · · = sir = 0.

Theorem 1 Let L be a restricted Lie algebra of Cartan type, and χ ∈ L∗

with ht(χ) = h, 2 6 h 6 sL − δLK . For I and Lχ given above, assume that
χ([Lχ, Lχ]) = 0 and assume [Lχ, Lχ][p] = 0. Suppose there is a partition of
the set {1, 2, . . . , n}: {1, 2, . . . , n} = I ∪ J, I ∩ J = ∅. Let Γ1 = 〈Di|i ∈ I〉,
and Γ2 = 〈Di|i ∈ J〉. If there is a subspace P ⊆ Lχ ∩ L0, P has only trivial
invariants in u(Γ1, χ) ⊆ u(L−, χ), and if there exist elements g1, g2, . . . , gr ∈
Lχ ∩ Lk, for some k ≥ h, such that the matrix

χ(




g1

g2
...
gr


 · (Di, i ∈ J|Di, i ∈ I))

is in the form (Ar|0), where Ar = (aij) is an invertible r× r matrix, then for
every simple u(L0, χ)−module M , we have

(1) Zχ(M) := u(L, χ)⊗u(L0,χ|) M is a simple u(L, χ)−module.
(2) dimZχ(M) = pn+t, where t = codimLχ

L0 .

Proof. By [7, Coro. 7.5, p.233], for any simple Lχ −module V ,

IndL0

Lχ =: u(L0, χ|)⊗u(Lχ) V

is a simple u(L0, χ) − module. By [7, Lemma 7.2(1), p.230], every simple
u(Lχ, χ) − module(referred to simply as Lχ − module in the following) is
1 − dimensional. If Fv is a simple Lχ − module, it is clear that there is
λ ∈ HomF (Lχ, F ), x·v = λ(x)v, for all x ∈ Lχ. Since xp ·v−x[p] ·v = χ(x)pv,
we get

λp(x)− λ(x) = χ(x)p, x ∈ Lχ.

If x[p] = 0, say x ∈ L1, then we have λ(x) = χ(x). It is clear that each
simple Lχ −module is completely determined by λ. We refer to Fv as the
simple Lχ −module with the linear form λ.

Let Fv ⊆ M be a simple Lχ− submodule with the linear form λ. By [7,
Corollary 7.6(1), p.233],

M ∼= IndL
Lχ = u(L0, χ|)⊗u(Lχ) Fv.

Therefore we have
Zχ(M) ∼= u(L, χ)⊗u(Lχ) Fv.
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Then (2) follows.
We proceed by showing that Fv is the unique simple Lχ− submodule of

Zχ(M) with linear form λ. Which will imply that Zχ(M) is simple.
Recall C =: {(a1, . . . , an)|0 6 ai 6 p− 1, i = 1, . . . , n}. For every a ∈ C,

define |a| =
∑n

i=1 ai. Let e1, . . . , et be a cobasis of Lχ in L0, f1, . . . , ft be
the elements in I such that χ((f1, . . . , ft)T (e1, . . . , et)) is the unit matrix.

Let M ′ be a simple u(L0, χ|)− submodule of Zχ(M), and let Fm ⊆ M ′

be a simple Lχ − submodule with linear form λ. Assume that

m =
∑

α,β∈C,|α|6s,|β|6s′
cα,βDαeβ ⊗ v,

where Dα =: Πn
i=1D

αi
i ∈ u(L−, χ), eβ =: Πt

i=1e
βi
i ∈ u(L0, χ|), and cα,β ∈ F .

Then by Lemma 2, we have αi = 0 for i ∈ J and |α| = s.
Applying fi to m, we have

χ(fi)
∑

|α|6s,|β|6s′
cα,βDαeβ ⊗ v

=
∑

|α|6s,|β|6s′
cα,βDαeβ ⊗ fiv + [fi,

∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v

=
∑

|α|6s,|β|6s′
cα,βDαeβ ⊗ χ(fi)v + [fi,

∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v

It follows that

(∗) [fi,
∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v = 0.

Note that fi ∈ I ⊆ L1+δLK . Then [fi, Dj ] ∈ L0. Since [. . . [fi, ej1 ] . . . ejs ] ∈ I,
for any finite sequence j1, . . . , js, we have

[. . . [fi, ej1 ] . . . ejs ]v = λ([. . . [fi, ej1 ] . . . ejs ])v.

Also we have [fi, ej ]v = χ([fi, ej ])v = δijv. Then using [7, Lemma 7.1,
p.229], we have

[fi,
∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v

=
∑

|α|<s

cα,β′D
αeβ′ ⊗ v +

∑

|α|=s,|β|=s′
cα,ββiD

αeβ−εi ⊗ v
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+
∑

|α|=s,|β|<s′−1

cα,β′D
αeβ′ ⊗ v.

Taking the summation of the terms Dαeβ on the left (∗) with |α| = s and
|β| = |s′| − 1, we have

∑

|α|=s,|β|=s′
cα,ββiD

αeβ−εi ⊗ v = 0.

Then we get βi = 0, i = 1, . . . , t. It follows that β = 0 for |α| = s.
Taking any x ∈ P , we have

λ(x)m = λ(x)
∑

|α|6s,|β|6s′
cα,βDαeβ ⊗ v = x ·m

=
∑

|α|6s,|β|6s′
cα,βDαeβ ⊗ xv + [x,

∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v.

Then
[x,

∑

|α|6s,|β|6s′
cα,βDαeβ]⊗ v = 0.

Since x ∈ L0, we have [x, u(L−, χ)i] ⊆ u(L−, χ)i, where

u(L−, χ)i = 〈Dα ∈ u(L−, χ)||α| = i〉.

Since β = 0 for |α| = s, we get
∑

|α|=s

cα,0[x,Dα]⊗ v +
∑

|α|<s,|β|6t

c′α,βDαeβ ⊗ v = 0.

Thus,
∑
|α|=s cα,0[x,Dα]⊗ v = 0. Since v 6= 0, we have

[x,
∑

|α|=s

cα,0D
α] = 0.

Since αi = 0 for all i ∈ J and |α| = s,
∑
|α|=s cα,0D

α is a P − invariant in
u(Γ1, χ). Then we have s = 0. This implies that m = c⊗ v, for some c 6= 0.

Since M ∼= IndL0

Lχ , we have M ′ = M . i.e., M is the unique simple
u(L0, χ)− submodule of Zχ(M). Then Zχ(M) is a simple u(L, χ)−module.
2

Note that if I = {1, 2, . . . , n} and J = ∅, Lemma 2 is then not used in
the proof above, so we may allow ht(χ) 6 sL + 1. Then we get
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Theorem 2 Let L be a restricted Lie algebra of Cartan type, and χ ∈
L∗. For I and Lχ given above, assume that χ([Lχ, Lχ]) = 0 and assume
[Lχ, Lχ][p] = 0. If there is a subspace P ⊆ Lχ ∩ L0, such that P has only
trivial invariants in u(L−, χ), then for every simple u(L0, χ) − module M ,
we have

(1) Zχ(M) := u(L, χ)⊗u(L0,χ) M is a simple u(L, χ)−module.
(2) dimZχ(M) = pn+t, where t = codimLχ

L0 .

Definition. Let L be a restricted Cartan type Lie algebra. If χ ∈ L∗

satisfies:
(a) χ(Ll) 6= 0 for some l > 0;
(b) χ(Li) = 0, for every i ≥ 0 and i 6= l,
then we say that χ is homogeneous with height l + 1.

If ht(χ) = 2l + 2 for some l > 0, we take I = Ll+1. Then it is easy to see
that Lχ = σ ⊕ I, where σ = {x ∈ L0 + · · ·+ Ll|χ([x, I]) = 0}.

If χ is homogeneous with height 2l+2, then restricting the bilinear form
B to Lm × L2l+1−m, m = 0, . . . , l, we get a bilinear form Bm. Denote

L⊥m = radLBm = {x ∈ Lm|Bm(x, L2l+1−m) = 0}.
Then it is easy to see that L⊥m = {x ∈ Lm|B(x, I) = 0} = radLB ∩ Lm,
and σ = ⊕l

m=0L
⊥
m. So we have Lχ = ⊕l

m=0L
⊥
m ⊕ I. It is easy to check that

χ([Lχ, Lχ]) = 0. Thus, we have

codimLχ

L0 = dimL0 − dimLχ =
l∑

m=0

(dimLm − dimL⊥m) =
l∑

m=0

r(Cm),

where Cm is the matrix of the bilinear form Bm.
From Theorem 1 we have

Corollary 1 Let L be a restricted Lie algebra of Cartan type. χ ∈ L∗ is
homogeneous with height 2l+2 6 sL−δLK . Assume that {1, 2, . . . , n} = I∪J,
I∩J = ∅. Let Γ1 = 〈Di|i ∈ I〉, and Γ2 = 〈Di|i ∈ J〉. Assume [L⊥0 , L⊥0 ][p] = 0.
If there is a subspace P ⊆ Lχ ∩ L0, such that P has only trivial invariants
in u(Γ1, χ) ⊆ u(L−, χ), and if there exist elements g1, g2, . . . , gr ∈ Lχ ∩ Lk,
for some k ≥ 2l + 2, such that the matrix

χ(




g1

g2
...
gr


 · (Di, i ∈ J|Di, i ∈ I))
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is in the form (Ar|0), where Ar = (aij) is an invertible r× r matrix, then for
any simple u(L0, χ|)−module M , Zχ(M) is a simple u(L, χ)−module and
dimZχ(M) = pn+t, where t = codimLχ

L0 .

From Theorem 2 we have

Corollary 2 Let L be a restricted Lie algebra of Cartan type. χ ∈ L∗ is
homogeneous with height 2l + 2. If [L⊥0 , L⊥0 ][p] = 0 and L⊥0 has only trivial
invariants in u(L−, χ), then for any simple u(L0, χ|) −module M , Zχ(M)
is a simple u(L, χ)−module and dimZχ(M) = pn+t, where t = codimLχ

L0 .

4 Applications of Corollary 2, ht(χ) = s + 1

Let Aut∗(W ) be the group of the homogeneous restricted automorphisms of
W . Since ad3(txiDj) = 0 and p ≥ 3, exp(adtxiDj) ∈ Aut∗(W ). Let E be
the subgroup of Aut∗(W ) generated by {exp(adtxiDj)|t ∈ F, i 6= j}. It is
easy to see that a subspace V ⊆ W is a (resp. simple) W0 −module if and
only if it is a (resp. simple) E −module.

Let s = n(p − 1) − 1. Then s is the largest index i such that Wi 6= 0.
Using [8, Theorem 2], it is easy to show that Aut∗(W )|Ws

= GL(Ws) and
E|Ws

= SL(Ws). Let χ ∈ W ∗ be homogeneous with height s + 1. It is
easy to see that Aut∗(W ) · χ|Ws

= W ∗
s − {0}. We assume first that χ is

homogeneous and χ(x(τ)Di) = δin. In addition, we assume that χ(Di) 6= 0,
for some i < n.

Using notions defined in Section 3, we have

Wχ = {x ∈ W 0|χ([x, I]) = 0} =
r∑

i=0

W⊥
i + I,

where

I = W r+1, r =
s− 1

2
=

n(p− 1)− 2
2

, W⊥
i =: {x ∈ Wi|χ([x,Ws−i]) = 0}.

Therefore, Wχ is a graded Lie subalgebra of W 0. It is easy to see that
χ([Wχ,Wχ]) = 0.

We determine W⊥
0 =: {x ∈ W0|χ([x,Ws]) = 0} in the following.

It is easy to check that xjDi ∈ W⊥
0 for all j > i, and xiDj ∈ W⊥

0

for all i < j 6= n. Let x =
∑n

i=1 aixiDi +
∑n−1

i=1 cixiDn ∈ W⊥
0 . Then

χ([x, x(τ)Di]) = 0, for all i < n. It follows that ci = 0, for all i < n. Then
χ([

∑n
i=1 aixiDi, x

(τ)Dn]) = 0, which gives
∑n−1

i=1 ai + 2an = 0.

11



We may choose a set of linearly independent solutions:

a1 = −2an, a2 = · · · = an−1 = 0; a2 = −2an, a1 = · · · = an−1 = 0; . . . .

Therefore W⊥
0 has a (n− 1)− dimensional torus

T = 〈2x1D1 − xnDn, 2x2D2 − xnDn, . . . , 2xn−1Dn−1 − xnDn〉.

It follows that
W⊥

0 =
∑

j>i

FxjDi ⊕ T ⊕
∑

i<j<n

FxiDj .

Then we get dimW⊥
0 = n2 − n.

Lemma 3 W⊥
0 has only trivial invariants in u(W−1, χ).

Proof. Let m =
∑
|a|6s caD

a ∈ u(W−1, χ) be a W⊥
0 − invariant. Taking

2xiDi − xnDn ∈ W⊥
0 , i < n, we have

0 = [(2xiDi − xnDn),m]

=
∑

|a|6s

ca[2xiDi − xnDn, Da]

= −
∑

|a|6s

(2ai − an)caD
a

This gives us 2ai = an, i = 1, . . . , n− 1.
Taking i < n with χ(Di) 6= 0, since xnDi ∈ W⊥

0 , we have

0 = [xnDi,m] =
∑

|a|6s

(−an)caD
a−εn+εi

Since 0 6= Da−εn+εi ∈ u(W−1, χ) unless an = 0, we get an = 0. Thus, a = 0
and m = c0 ∈ F . 2

We determine the codimension of Wχ in W 0 next.
Following Section 3, we define the skew-symmetric bilinear form B:

W 0 × I −→ F
(x,y)−→χ([x,y])

.
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For each 1 6 m 6 r = s−1
2 , restricting B to Wm×Ws−m, we obtain a bilinear

form Bm. Then W⊥
m = radLBm. Since χ is homogeneous with height s + 1,

by discussions in Section 3,

CodimW χ

W0
=

r∑

m=0

CodimW⊥
m

Wm
.

For l ∈ Z+, denote Nn(l) =: card{(a1, . . . , an)|0 6 ai 6 p− 1,
∑n

i=1 ai = l}.
We have

Nn(l) =
n∑

t=0

(−1)t

(
n

t

)(
n + l − tp− 1

n− 1

)
.

This is from the last formula on the page

http : //www.mathpages.com/home/kmath337.htm

Then we get dimWl = nNn(l + 1).
For 1 6 m 6 r, denote Cm the matrix of Bm related to the standard

basis of Wm and Ws−m. Then Cm is in the form



χ(Wm|Ws−m) x(bi)Dj
i6Nn(s−m+1),j<n

| x(bi)Dn
i6Nn(s−m+1)

−−− −−− | − −−
x(a1)D1

...

x
(aNn(m+1))Dn−1

0 | A1

−−− −−− | − −−
x(a1)Dn

...

x
(aNn(m+1))Dn

A2 | ∗




.

It is easy to check that for every x(a)Di ∈ Wm, i < n,
(1) if ai 6= 0, then χ([x(a)Di, x

(b)Dj ]) 6= 0 only if b = τ−a+εi and j = n;
(2) if ai = 0, x(a)Di ∈ radLBm.
For every x(b)Dn ∈ Ws−m, since s − m > r = n(p−1)

2 − 1, there exists
i < n such that bi 6= 0. Hence x(τ−b+εi)Di is a well defined element of Wm,
and χ([x(τ−b+εi)Di, x

(b)Dn]) 6= 0.
Then each row of the matrix A1 has at most one nonzero entry, and each

column of A1 has at least one nonzero entry. We get r(A1) = the number
of columns of A1=card{x(b)Dn||b| = s−m + 1} = Nn(s−m + 1). Also it is
easy to see that r(Cl) = r(A1) + r(A2).

We now determine r(A2). For x(a)Dn ∈ Wl, there exists i < n such that
χ([x(a)Dn, x(τ−a+εi)Di]) 6= 0, unless ai = 0, for all i < n. The exception
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occurs only when m 6 p − 2, in which case χ([x(a)Dn, x(b)Di]) = 0, for all
x(b)Di ∈ Ws−m and i < n. Then we have

r(A2) = card{a ∈ C|x(a)Dn ∈ Wm} − δl6p−2 = Nn(m + 1)− δm6p−2.

Then we have

codimW χ

W 0 = n +
r∑

m=1

r(Cm)

= n +
r∑

m=1

[Nn(m + 1) + Nn(s−m + 1)− δm6p−2].

If n = 2, then [W⊥
0 ,W⊥

0 ][p] = 0. By Corollary 2, for any simple u(W 0, χ|)−
module M , Zχ(M) is a simple u(W,χ)−module with dimension

p2n+
Pr

m=1[Nn(m+1)+Nn(s−m+1)−δm6p−2].

Theorem 3 Let W = W (n, 1) with n = 2, and let χ ∈ W ∗ be homoge-
neous with height s + 1. In particular, if there is Φ ∈ Aut∗(W ), such that
χΦ(x(τ)Di) = δin and χΦ(Di) 6= 0 for some i < n. Then there are pn−1 non-
isomorphic simple u(W,χ) − modules, each of them is induced by a simple
module of its maximal subalgebra and has dimension

p2n+
Pr

m=1[Nn(m+1)+Nn(s−m+1)−δm6p−2].

Proof. By Lemma 1 we need only to assume that χ(x(τ)Di) = δin and
χ(Di) 6= 0 for some i < n.

Let Fv be a simple Wχ − module. Recall that W⊥
0 has a (n − 1) −

dimensional torus spanned by hi = 2xiDi− xnDn, i = 1, . . . , n− 1. Assume
hi · v = λiv. Since hp

i v − h
[p]
i v = χ(hi)pv = 0, λp

i = λi, or λi ∈ Fp. Then we
get

(λ1, . . . , λn−1) ∈ Fn−1
p .

The (n − 1) − tuple is referred to as the weight of v. We see that as a
Wχ − module, Fv is completely determined by its weight. Two simple
Wχ−modules Fv and Fv′ are nonisomorphic if they have different weights.
It follows that there are pn−1distinct isomorphism classes of simple Wχ −
modules.

Let Zχ(M) and Zχ(M ′) be two u(W,χ) − modules induced by simple
u(W 0, χ|)−modules M and M ′ respectively. From the proof of Theorem 1
each of them contains a unique simple Wχ − submodule, denoted Fv and
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Fv′ respectively, and each is also induced by the 1 − dimensional simple
Wχ − submodule. Then it follows that Zχ(M) ∼= Zχ(M ′) if and only if v
and v′ have the same weights. By Corollary 2 Zχ(M ′) is simple, for any
simple u(W 0, χ|)−module M ′. Therefore there are at least pn−1 isomorphic
classes of induced simple u(W,χ)−modules.

Let N be a simple u(W,χ) −module, N′ ⊆ N be a simple u(W 0, χ|) −
submodule, and let Fv ⊆ N′ be a simple Wχ− submodule. By [7, Corollary
7.6, p.233], N′ is induced by Fv. Then the inclusion map Fv −→ N induces
a u(W,χ)−module homomorphism

h : Zχ(N′) ∼= u(W,χ)⊗u(W χ) Fv −→ N

such that h(x⊗v) = x ·v for every x ∈ u(W,χ). Since h is obviously nonzero
and both Zχ(N′) and N are simple u(W,χ)−modules, h is an isomorphism.

So each simple u(W,χ)−module is isomorphic to some Zχ(M). It follows
that there are pn−1 pairwise nonisomorphic simple u(W,χ)−modules.

2

Remark: All through this paper, we are only working on the homogeneous
characters. But by Lemma 1, if there is Φ ∈ Aut1(W ) and χ ∈ W ∗ such
that χΦ satisfies Theorem 3 and Theorem 4, then the conclusions of the two
theorems also holds for χ, although χ itself need not be homogeneous.

5 Applications of Corollary 1 , ht(χ) = 2l+2 < s+1

Definition. ([10, p.413]) Let χ ∈ L∗ and ht(χ) = h, 2 6 h 6 s. We define
the characteristic matrix of W associated with χ to be Aχ := χ(A), the
matrix A is given by

A :=




f1

f2
...
fl


 (D1, D2, . . . , Dn),

where {f1, . . . , fl} is a standard basis of Wh. If r(Aχ) = n, χ is referred to
as nonsingular; if r(Aχ) = r < n, then χ is referred to as singular with rank
r.

Definition.([10, p.430]) Let L = W,S,H, K, and let χ ∈ L∗ with ht(χ) = h.
For a partition of the set {1, . . . , ñ}: {1, . . . , ñ} = I ∪ J , I ∩ J = ∅, where
I = {i1, . . . , ir̃} and J = {ir̃+1, . . . , iñ}, we assume χ satisfies the following:
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(a) χ((f1, . . . , fl)T (Di1 , . . . , Dir̃)) has an invertible r̃× r̃ minor,
(b) χ([Lh, Dj ]) = 0, for every j ∈ J ,
(c) there is a L0 − submodule M⊆ Lh−1 with χ(M) = 0,
(d) there are elements fr̃+1, . . . , fñ ∈M such that the matrix

B = (bij) := χ((fr̃+1, . . . , fñ)T (Dir̃+1
, . . . , Diñ))

is invertible. Then it is clear that χ is singular with rank r. χ is called
M −invertible.

By [10], for every nonsingular or ∆ − invertiable χ, Zχ(M) is simple and
every simple u(W,χ)−module is isomorphic to some Zχ(M).

For l > 0, let 2l + 2 = k(p− 1) + r, 0 < r 6 p− 1, and let

ā = (p− 1, . . . , p− 1
(k)

, r, 0 . . . , 0).

By [11], v1 = x(ā)Dn is a maximal vector in W2l+1. W2l+1 has only two
maximal vectors v1 and v2. Let V1 = u(W0)v1 and V2 = u(W0)v2. If
p - (n+2l+1), V1 and V2 are the only simple W0−submodules and W2l+1 =
V1 ⊕ V2.

Let V ∗
1 = {f ∈ W ∗

2l+1|f(V2) = 0} and V ∗
2 = {f ∈ W ∗|f(V1) = 0}. If

p - (n + 2l + 1), both V ∗
1 and V ∗

2 are simple W0 − submodules of W ∗
2l+1 and

W ∗
2l+1 = V ∗

1 ⊕ V ∗
2 .

Let {x(a)Di|a ∈ C, i = 1, . . . , n} be the standard basis vectors of witt
algebra W . For each x(a)Di, we define Cx(a)Di

∈ HomF (Wl, F ) (0 < l 6 s)
by

Cx(a)Di
(x(b)Dj) = δabδij .

In this section, we assume that χ is homogeneous with height 2l + 2 6=
(n− 1)(p− 1). In particular, we assume that χ|W2l+1

∈ Aut∗(W )Cx(ā)Dn
.

Lemma 4 ([10, Prop. 2.4]) Let Aut(W ) be the group of restricted auto-
morphisms of W . Then for every Φ ∈ Aut(W ), r(Aχ) = r(AχΦ

)

Lemma 5 If ht(χ) = 2l + 2 ≥ p− 1, χ is singular with rank n− k− δr,p−1.

Proof. Let ā = (p − 1, . . . , p− 1
k

, r, 0, . . . , 0), 0 < r 6 p − 1. Since ht(χ) ≥
p− 1, |ā| ≥ p− 1. Then we have k > 0.

By Lemma 4, we may assume that χ|W2l+1
= Cx(ā)Dn

.
If r < p− 1, then it is clear that χ([Di, x

(a)Dj ]) = 0, for every i 6 k and
x(a)Dj ∈ W2l+2.
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It is also easy to check that

−χ((x(ā+εk+1)Dk+1, . . . , x
(ā+εn)Dn)T (Dk+1, . . . , Dn))

is the (n− k)× (n− k) unit matrix, then χ is singular with rank n− k.
If r = p− 1, then χ([Di, x

(a)Dj ]) = 0, for every i 6 k + 1 and x(a)Dj ∈
W2l+2. It is easy to see that

−χ((x(ā+εk+2)Dk+2, . . . , x
(ā+εn)Dn)T (Dk+2, . . . , Dn))

is the (n− k− 1)× (n− k− 1) unit matrix, then χ is singular with rank
n− k − 1. 2

Since χ is homogeneous, χ is not ∆− invertible.
We denote

I = W l+1, Wχ = {x ∈ W 0|χ([x, I]) = 0}.

For any simple u(W 0, χ|)−module M , We will show that Zχ(M) is a simple
u(W,χ)−module and compute its dimension for each of the following cases.

5.1 2l + 2 > (n− 1)(p− 1)

Let Ã =: {(a1, a2, . . . , an)|−1 6 ai 6 p−1, i = 1, . . . , n}. Then we introduce
an Ã − gradation on W (denoted G) as follows: G(x(a)Di) = a − εi ∈ Ã.
Ã is a completely ordered set with the order 4 defined as: (a1, . . . , an) 4
(b1, . . . , bn) iff a1 = b1, . . . , ai−1 = bi−1, ai < bi for some i ≥ 1. Then we have
Wl = ⊕α∈Ã(Wl)α, where (Wl)α = 〈x(a)Di|a− εi = α〉.

It is easy to see that for every i < j and 0 6= v ∈ (Wl)a, if xiDj · v 6= 0,
then

G(xiDj · v) = a + εi − εj 4 a = G(v).

Let 2l+2 = (n−1)(p−1)+r, 0 < r < p−1. Denote ā = (p−1, . . . , p−1, r) ∈
Ã. In this subsection we assume that χ is homogeneous with height 2l + 2.
In particular, we assume that χ|W2l+1

= Cx(ā)Dn
. We determine W⊥

0 in the
following.

For the order 4, G(x(ā)Dn) = ā−εn is the largest a such that (Wl)a 6= 0.
We then have

∑
j>i FxjDi ⊆ W⊥

0 . A similar method as that used in Section
4 applied, we obtain a (n− 1)− dimensional torus of W⊥

0 :

T = {(r − 1)xiDi + xnDn|i = 1, . . . , n− 1}.
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For each i < j < n,there is no α ∈ Ã such that α+εi−εj = ā−εn. Therefore
xiDj ∈ W⊥

0 . For each i < n, it is easy to check that xiDn·x(ā)Di = −x(ā)Dn.
Thus, xiDn /∈ W⊥

0 . So we have

W⊥
0 =

∑

j>i

FxjDi + T +
∑

i<j<n

FxiDj .

Then we get dimW⊥
0 = n2 − n.

We have a partition of the set {1, . . . , n}: {1, . . . , n} = I ∪ J, where
I = {1, . . . , n− 1} and J = {n}. Taking x(ā+εn)Dn ∈ W2l+2, then we have

χ(x(ā+εn)Dn · (D1, . . . , Dn−1|Dn)) = (0, . . . , 0| − 1).

Let Γ1 = 〈Di|i = 1, . . . , n− 1〉.

Lemma 6 W⊥
0 has only trivial invariants in u(Γ1, χ).

Proof. Let m =
∑
|a|6s,an=0 caD

a ∈ u(Γ1, χ) be a W⊥
0 − invariant. Taking

(r − 1)xiDi − xnDn ∈ W⊥
0 , i < n, we have

0 = [((r − 1)xiDi − xnDn), m]

=
∑

|a|6s

ca[(r − 1)xiDi − xnDn, Da]

= −
∑

|a|6s

ai(r − 1)caD
a

This gives us ai = 0, for all i < n. Then we have m = c ∈ F , for some c 6= 0.
2

For each skew bilinear form (1 6 m 6 l)

Bm : Wm ×W2l+1−m → F
(x,y)−→χ([x,y])

,

denote its matrix by Cm. It is easy to see that
(1) Bm(x(a)Ds, x

(b)Dj) = 0, if s, j < n.
(2) For x(a)Ds ∈ Wm(s < n), if as = 0 or an > r, then x(a)Ds ∈

radLBm; if as 6= 0 and an 6 r, there is a unique b = ā − a + εs, such that
Bm(x(a)Ds, x

(b)Dn) 6= 0.
(3) For x(a)Dn ∈ Wm, if an > r + 1, then x(a)Dn ∈ radLBm.
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In calculating r(Cm), we may exclude the elements of radLBm and
radRBm. Then we get a nonzero submatrix of Cm with maximal order,
denoted also by Cm.

Using the identity

−
(

ā

a− εi

)
=

(
ā

a

)
∈ F, i < n, ai > 0,

we have Cm =



χ(.|.) x(b)D1 · · · x(b)Dn−1 x(b)Dn
bn6r

x(b)Dn
bn=r+1

−−− −−− −−− −−− −−− −−−
x(a)D1

a1 6=0,an6r
0 . . . 0 b = ā−a+ε1

(ā
a)

0

−−− −−− −−− −−− −−− −−−
· · · · · ·
− − − −−− −−− −−− −−− −−−

x(a)Dn−1
an−1 6=0,an6r

0 · · · 0 b = ā−a+εn−1

(ā
a)

0

−−− −−− −−− −−− −−− −−−
x(a)Dn

an6r
b = ā−a+ε1

(ā
a)

· · · b = ā−a+εn−1

(ā
a)

b = ā−a+εn

(ā
a)−( ā

a−εn
)

b = ā−a+εn

(ā
a)

−−− −−− −−− −−− −−− −−−
x(a)Dn
an=r+1

0 · · · 0 b = ā−a+εn

−( ā
a−εn

)

0




.

In each block row above, say the row determined by u = x(a)D1 with a1 6= 0
and an 6 r, we use the notation b = ā−a+ε1

(ā
a)

indicates that when v = x(b)Dn and

bn 6 r, χ(u|v) 6= 0 only if b = ā− a + ε1. In particular, χ(u|v) =
(
ā
a

)
.

On the second last block row, for each row inside indexed by a with
an = 0, b = ā − a + εn has bn = r + 1. So the last nonzero entry is in the
last block column. Since there exists some i < n, such that ai 6= 0, there
is a nonzero entry in the same row, but in the first n − 1 block columns.
By applying elementary column operations, the last block column may be
completely eliminated. Similarly the last block row may be eliminated by
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elementary row operations. Then we have r(Cm) = r(C ′
m), where C ′

m =



χ(.|.) x(b)D1 · · · x(b)Dn−1 x(b)Dn
bn6r

−−− −−− −−− −−− −−−
x(a)D1

a1 6=0,an6r
0 . . . 0 b = ā−a+ε1

(ā
a)

−−− −−− −−− −−− −−−
· · · · · ·
− − − −−− −−− −−− −−−

x(a)Dn−1
an−1 6=0,an6r

0 · · · 0 b = ā−a+εn−1

(ā
a)

−−− −−− −−− −−− −−−
x(a)Dn

an6r
b = ā−a+ε1

(ā
a)

· · · b = ā−a+εn−1

(ā
a)

b = ā−a+εn

(ā
a)−( ā

a−εn
)




=




χ(.|.) x(b)Di
i<n

x(b)Dn
bn6r

−−− −−− −−−
x(a)Di, i < n

an6r,ai 6=0
0 A1

−−− −−− −−−
x(a)Dn

an6r
A2 ∗




.

Recall our assumption 2l + 2 = (n − 1)(p − 1) + r, 1 < r < p − 1. For
every x(b)Dn ∈ W2l+1−m with bn 6 r, since

|b| = 2l + 2−m ≥ l + 2 =
n− 1

2
(p− 1) +

r

2
+ 1 > r,

there is i < n such that bi 6= 0. Let a = ā− b + εi. Then ai 6= 0, an 6 r and
χ([x(a)Di, x

(b)Dn]) 6= 0.
For each x(a)Ds with as 6= 0 and an 6 r, there is unique b = ā− a + εs,

such that χ([x(a)Ds, x
(b)Dn]) 6= 0.

So each row of A1 has only one nonzero entry and each column of A1 has
at least one nonzero entry. It follows that r(A1) is the number of columns
of A1= card{b ∈ C|bn 6 r, |b| = (2l + 2) − m}. Also we have r(C ′

m) =
r(A1) + r(A2).

By a similar discussion, we have

r(A2) = card{a ∈ C|an 6 r, |a| = m + 1}.
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For the convenience, we denote for any x ∈ Z+

fr(x) := card{b ∈ C|bn 6 r, |b| = x + 1}.

It is easy to see that fr(x) =
∑r

c=0 Nn−1(x + 1− c). Then we get r(Cm) =
fr(m) + fr(2l + 1−m). m = 1, . . . , l.

Thus,

codimW χ

W 0 =
l∑

m=1

[fr(m) + fr(2l + 1−m)] + n.

Let n = 2. Then [W⊥
0 ,W⊥

0 ][p] = 0. Then by Corollary 1, for any simple
u(W 0, χ|)−module M , Zχ(M) is a simple u(W,χ)−module and

dimZχ(M) = p
Pl

m=1[fr(m)+fr(2l+1−m)]+2n.

5.2 2l + 2 < (n− 1)(p− 1)

Let 2l + 2 = k(p − 1) + r, 0 6 r < p − 1. Following [11], denote ā =
(p − 1, . . . , p− 1

k
, r, 0, . . . , 0). Then k + 1 < n. Assume in this subsection

that χ is homogeneous with height 2l + 2. In particular, we assume that
χ|W2l+1

= Cx(ā)Dn
.

Applying a similar method as that used in the last subsection, we have
if r 6= 0,

W⊥
0 =

∑

j>i

FxjDi + T +
∑

i<j6k

FxiDj +
∑

k+1<i<j<n

FxiDj ;

if r = 0,

W⊥
0 =

∑

j>i

FxjDi + T +
∑

i<j6k

FxiDj +
∑

k+16i<j<n

FxiDj ,

where

T = 〈xiDi − xnDn|i = 1, . . . , k〉 ⊕ F (xk+1Dk+1 + rxnDn) +
n−1∑

i>k+1

FxiDi.

Then we get dimT = n− 1, and dimW⊥
0 = t0 =:

1
2
[(n− 1)(n + 2) + k(k − 1) + (n− k − 2)(n− k − 3)] + (n− k − 2)δr=0

= (n− 1)2 + (k + 1)2 − kn + δr=0(n− k − 2).
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We have a partition of the set {1, . . . , n}: {1, . . . , n} = I ∪ J, where
I = {1, . . . , n− 1} and J = {n}. Taking x(ā+εn)Dn ∈ W2l+2, then we have

χ(x(ā+εn)Dn · (D1, . . . , Dn−1|Dn)) = (0, . . . , 0| − 1).

Let Γ1 = 〈Di|i = 1, . . . , n− 1〉.
Applying a similar argument as that used in the proof of Lemma 6, we

have

Lemma 7 W⊥
0 has only trivial invariants in u(Γ1, χ).

For m = 1, . . . , l, we define the bilinear form Bm:

Wm ×W2l+1−m −→ F
(x,y)−→χ([x,y])

.

It is easy to check that for x(a)Dn ∈ Wm, we have
(1) Bm(x(a)Di, x

(b)Dj) = 0 if i < n and j < n.
(2) If i 6 k and ai = 0, then x(a)Di ∈ radLBm.
(3) If a � ā and i < n, then x(a)Di ∈ radLBm.
(4) If a 6 ā, and if i 6 k, ai 6= 0, then there is unique b = ā − a + εi,

such that x(b)Dn ∈ W2l+1−m and Bm(x(a)Di, x
(b)Dn) 6= 0.

(5) If a � ā + εi for some k < i < n, x(a)Dn ∈ radLBm.
(6) If a 6 ā + εi for some k < i < n, there is unique b = ā− a + εi, such

that Bm(x(a)Dn, x(b)Di) 6= 0.
Denote the matrix of Bm by Cm, and the maximal nonzero submatrix

of Cm

also by Cm. From the discussion above, using the identity

−
(

ā

a− εi

)
=

(
ā

a

)
, ai > 0, i 6 k,
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we have

Cm =




x(a)D1
a1 6=0,a6ā

−−−−
. . .

−−−−
x(a)Dk

ak 6=0,a6ā

−−−−
x(a)Dk+1

a6ā

−−−−
. . .

−−−−
x(a)Dn−1

a6ā

−−−−
x(a)Dn

a6ā

−−−−
x(a)Dn

ak+1=r+1,a6ā+εk+1

−−−−
. . .

−−−−
x(a)Dn

an−1=1,a6ā+εn−1

−−−−
x(a)Dn

an=1,a6ā+εn




·(x(b)D1| . . . |x(b)Dk|x(b)Dk+1| . . . |x(b)Dn−1|x(b)Dn
b6ā

| x(b)Dn
bk+1=r+1

b6ā+εk+1

| . . . |x(b)Dn
bn=1

b6ā+εn

)

23



=



0 . . . 0 0 . . . 0 b = ā−a+ε1

(ā
a)

0 . . . 0

. . . . . . . . . . . .
0 . . . 0 0 . . . 0 b = ā−a+εk

(ā
a)

0 . . . 0

0 . . . 0 0 . . . 0 | ∗ | ∗| . . . 0
. . . . . . . . . . . .

0 . . . 0 0 . . . 0 0 0 b = ā−a+εn−1

(ā
a)

0

b = ā−a+ε1

(ā
a)

. . . b = ā−a+εk

(ā
a)

b = ā−a+εk+1

−( ā
a−εk+1

)

. . . 0 0 0 . . . b = ā−a+εn

(ā
a)

0 . . . 0 b = ā−a+εk+1

−( ā
a−εk+1

)

. . . 0 0 0 . . . 0

. . . . . . . . . . . .
0 . . . 0 0 . . . b = ā−a+εn−1

−( ā
a−εn−1

)

0 0 . . . 0

0 . . . 0 0 . . . 0 b = ā−a+εn

−( ā
a−εn

)

0 . . . 0




,

where | ∗ | ∗ | = |b = ā− a + εk+1

(ā
a)

|0|, if ak+1 > 0; if ak+1 = 0, | ∗ | ∗ | =

|0|b = ā− a + εk+1

(ā
a)

|.

For the block row determined by x(ā)D′
ns with a 6 ā, if an = 0, then

b = ā − a + εn satisfies b 6 ā + εn and bn = 1. So each row inside has
the last nonzero entry in the last block column. Since m ≥ 1, there is
i 6 k + 1 such that ai 6= 0. Let b = ā− a + εi. Then x(b)Di ∈ W2l+1−m, and
χ([x(a)Dn, x(b)Di]) 6= 0. So at least there is another nonzero entry in the
same row but first k + 1 block columns. Then by applying the elementary
column operation, the last block column of Cm can be eliminated.

Similarly, the last block row of Cm can be completely eliminated by
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elementary row operations. Then Cm has the same rank as the matrix



0 . . . 0 0 . . . 0 b = ā−a+ε1

(ā
a)

0 . . .

. . . . . . . . .
0 . . . 0 0 . . . 0 b = ā−a+εk

(ā
a)

0 . . .

0 . . . 0 0 . . . 0 | ∗ | ∗| . . .
. . . . . . . . .
0 . . . 0 0 . . . 0 0 0 b = ā−a+εn−1

(ā
a)

b = ā−a+ε1

(ā
a)

. . . b = ā−a+εk

(ā
a)

b = ā−a+εk+1

−( ā
a−εk+1

)

. . . 0 0 0 . . .

0 . . . 0 b = ā−a+εk+1

−( ā
a−εk+1

)

. . . 0 0 0 . . .

. . . . . . . . .
0 . . . 0 0 . . . b = ā−a+εn−1

−( ā
a−εn−1

)

0 0 . . .




=




χ(.|.) x(b)Dj
j6n−1

x(b)Dn
b6ā+εi,k+16i<n

−−− −−− −−−
x(a)Di

a6ā,i6n−1
0 A1

−−− −−− −−−
x(a)Dn

a6ā+εi,k+16i<n
A2 0




.

Each row(column) of A1(A2) has only one nonzero entry.
For each b 6 ā+ εi, k +1 6 i < n, if bi = (ā)i +1, then let a = ā− b+ εi.

We have a 6 ā and χ([x(a)Di, x
(b)Dn]) 6= 0. If b 6 ā, since m ≥ 1 there is

i 6 k+1 such that bi < (ā)i. Let a = ā−b+εi. Then χ([x(a)Di, x
(b)Dn]) 6= 0.

So each column of A1 has at least one nonzero entry. Then we have
r(Cm) = r(A1) + r(A2), and

r(A1) = the number of columns of A1

= card{b ∈ C||b| = 2l + 2−m, b 6 ā + εi, k + 1 6 i < n}.
For any x ∈ Z+, denote

g(x) = card{b ∈ C||b| = x, b 6 ā + εi, k + 1 6 i < n}.
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Then we have

g(x) = card{b ∈ C||b| = x, b 6 ā}+(n−k− 1)card{b ∈ C||b| = x− 1, b 6 ā}.

=
r∑

c=0

Nk(x− c) + (n− k − 1)
r∑

c=0

Nk(x− 1− c).

Therefore we get r(A1) = g(2l + 2 −m). By a similar discussion as above,
we will have r(A2) = g(m + 1). It then follows that

r(Cm) = g(m + 1) + g(2l + 2−m).

Thus,
codimW⊥

m
Wm

= g(m + 1) + g(2l + 2−m), 1 6 m 6 l.

Assume [W⊥
0 ,W⊥

0 ][p] = 0. For example, in the case r 6= 0, let n = 2, 3, or
let n = 4 and k = 1, 2. Then by Corollary 1, we have that for any simple
u(W 0, χ|)−module M , Zχ(M) is a simple u(W,χ)−module and

dimZχ(M) = p
Pl

m=1(g(m+1)+g(2l+2−m))+n2−t0+n.

5.3 The conclusion

Theorem 4 Let χ ∈ W ∗ be homogeneous with ht(χ) = 2l + 2 < s + 1 and
2l + 2 6= (n− 1)(p− 1). Assume [W⊥

0 ,W⊥
0 ][p] = 0. If there is Φ ∈ Aut∗(W ),

such that χΦ
|W2l+1

= Cx(ā)Dn
, then there are pn−1 pairwise nonisomorphic

simple u(W,χ)−modules. Each of them is induced by the simple submodule
of its maximal subalgebra, and has dimension{

p
Pl

m=1(f
r
m+fr

2l+1−m)+2n, if 2l + 2 > (n− 1)(p− 1),
p
Pl

m=1(g(m+1)+g(2l+2−m)+n2−t0+n, if 2l + 2 < (n− 1)(p− 1).

Proof. With the results from the two subsections above, then the proof
follows by applying a similar argument as that used in the proof of Theorem
3. 2
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