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Abstract

The simple modules with homogeneous characters are considered,
their dimension formulas are determined.

1 Introduction

Let (L,[p]) be a finite-dimensional restricted Lie algebra over an algebraically
closed field F, and M an L — module. If there exists a linear form y € L* =
Homp (L, F') such that

DPm — DPli = \(D)Pm

for D € L and m € M. We say that L—module M has character y. From [7],
not every module has a character, but at least every simple module has one.
If M is an L — module with xy = 0, then we call M a restricted L — module.
If x # 0, M is called a nonrestricted module.

Let L be the restricted Cartan type algebra over F' of characteristic
p > 3. Let x € L*. Let L = ), L; be the standard grading on L and
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put Lt = >_j>i Lj- The height of the character x was defined by: ht(x) =
min{i > —1|x(L?) = 0}.

In 1941, Chang [1] worked with the smallest Witt algebra W(1,1) and
determined all the simple modules with arbitrary characters. Later, Strade
[6] gave proofs of many of Chang’s results in a different approach. Koreshkov
[4] studied the next smallest Witt algebra, W (2,1).

Holmes [2] worked with the general Witt algebra W(n,1), gave a uni-
form treatment of the three cases ht(y) = —1,0,1 and classified all the
simple modules of the restricted Witt algebra W (n,1). He also obtained
their dimension formulas. In [3], we classified all the simple modules of the
nonexceptional weights with height at most one for the other three types
algebras. Namely, special algebras, hamiltonian algebras and contact al-
gebras. Particularly, when the height of the character equals one, all the
weights are nonexceptional, in the sense that each simple module is induced
by a simple module of its maximal subalgebra.

Then in [9], all the simple modules with the exceptional weights for the
type S, H, K are classified. The character with height greater than one was
investigated in [10], in which the author proved that all the simple modules
with nonsingular or A — invertible characters are induced by the simple
modules of their maximal subalgebras.

In the present work, the authors are working with singular homogeneous
characters with height greater than one. We show that all simple modules
for the Witt algebra with given characters are also induced by the sim-
ple modules of their maximal subalgebras. In addition, we determined the
dimension of these simple modules.

The paper is organized as follows. In Section 2, we define the restricted
Lie algebras of Cartan type. In Section 3, we give theorems about the sim-
plicity for the induced L —modules. Then we deduce corollaries particularly
for the homogenous characters. As an application, we work out the dimen-
sion formula of the simple modules for some homogeneous characters in both
Sections 4 and 5.

The research was initiated when the second author was visiting Auburn
University. He would like to express his gratitude to the Department of
Mathematics of Auburn University for the hospitality.

2 Preliminaries

In this section we describe the simple restricted Lie algebra of Cartan type,
drawing most of the notation and results from [7]. Fix n € N and let



a,b € Z"™. We write a < bif a; < b; for all 1 <7 < n and we write a < b
ifa<bbuta#b Ifa,b> 0, define (Z) = II; (ZZ), where (Zz) is the usual
binomial coeflicient with the convention that (Z;) = 0 unless b; < a;. Set
¢ :={a€Z"0 <a< 7} where 7 := (p—1,...,p — 1). The divided
power algebra 24 = (n, 1) is the associative F' — algebra having F' — basis
{2{9|a € €} and multiplication subject to the rule

Lo m _ JD et b <
0, otherwise.

(1) Given a € Z", set |a| = Y ,a;. Defining 2 = (z(¥]a € ¢ |a| = k)

and W, = Zj Ar11D;, we have the simple restricted Witt algebra W =

W(n,1) = @ | W;, where syy =n(p—1)—1=|7|-1. W_, =31 | FD;.
(2) Suppose n > 3, we introduce the mappings

A= W(n,1),
Y\ f = Di(f)Di = Di(f)D;.
Then the simple restricted special Lie algebra is
S=5n1)=Dy(f)lf eA1<i<j<n).

S=@;5 |SNW,; is graded with sg =n(p—1) —2=|7| —2. S_; = W_,.
(3) Let 7 € N and define

. I, O0<i<r,
o(i) = .
-1, r<e<2r

For 1 <i < 2r, put ¢/ =i+ o(i)r.
Define Dg: A(2r,1) — W(2r,1) by means of

2r
Du(f) =Y _o(i)D;(f)Dy,
j=1

then by [7], H = Dy ((2r,1)) is a Lie subalgebra of W (2r,1). Its subalge-
bra
H=H2r1)=(Dgz'0 <a<71)

is called the simple restricted hamiltonian Lie algebra. H is a graded sub-
algebra of W with length sy = n(p — 1) — 3 = |7| — 3. Directly by the
definition, we have Dya(€) = o(1)D;. Hence we have H_; = W_;.



(4) Let r € Nand put n =2r + 1, A = A(n, 1), W = W(n, 1). Define a
linear mapping Dg: A — W by means of

Dx(f) =3 £,
j=1
where
2r
j=1

Define the Lie product (,) on 2A(2r+1,1) by (f,9) := Dr(f)(g) —29Dn(f).
Then A(2r+1,1) is a Lie algebra, we denote this Lie algebra by K'(2r+1,1).
We define ||a|| = |a| + a,, + 2 for a € €. The vector spaces K'(2r +1,1); :=
((@]||a|| = i) define a gradation on K'(2r +1,1).

The simple restricted contact Lie algebra is then

K'(2r+1,1), n+3#0 mod (p),

K=K(@r+1,1) =
@a<TFx(a), n+3=0 mod (p).

Then we have K = @;>_oK(2r +1,1),.
In this paper, we denote for the contact algebra K

Dy = a:(q), ceiy Dy = :(:(6”—1), D, =1

Welet L. =L_,if L=W,S,H,and L_ =L_; +L_5if [ = K.

We write Aut(L) for the group of restricted automorphisms of L (®:
L — L is restricted provided that ®(DIP)) = ®(D)P! for all D € L). Let
® ¢ Aut(L) and let M® be an L —module having M as its underlying vector
space and L — action given by x-m = ®(z)m, for x € L and m € M, where
the action on the right is the given one. Then M® is simple if and only if M
is. Let L be a restricted Lie algebra, and M is an L —module with character
x. It is easy to check that M® has character x®, where x®(z) = x(®(z))
for € L. We have ht(x®) =ht(x) by [2, 1.2]. Let # : V + U be a linear
transformation of vector spaces over F. If V = @V, and U = @U;, we say 0
is homogeneous provided 6(V;) C U; for each 1.

Putting Aut*(L) = {® € Aut(L)|® is homogeneous } and Aut;(L) =
{® € Aut(L)|(® — 11)(L;) C L1 for each i}, then by [8, Theorem 2],
Aut(L) = Aut™(L) x Auty(L).

Let ® € Aut(L) and x € L*. Denote x|ro simply by x|. For any simple
u(L°, x|) — module M, denote the induced module u(L, x) @y Loy M by
ZX(M).



Lemma 1 .
2 (M)* = 23" (M®)

Proof. By the definition, ZX"(M®) = w(L, x*) ® (L9 x| M®.  Since
ZX(M)® contains M?® as an L° — submodule, by the universal property,
there is L — homomorphism f:

27 (M*) — 2(M)*,
such that f(3>°D* @ my) = Y D*® f(m,). Then f is an epimorphism.

Since both sides have the same dimension, f is an isomorphism. O

By the Lemma, we have ZX(M) = (ZX" (M®))®™". Then to study ZX(M),

we may choose a representative in the AutW — orbit AutW - x such that

x® is in a simpler form. We then work on Zx" (M®). It follows from the

lemma that ZX" (M®) is simple if and only if ZX(M) is, and they have the
same dimension.

3 Two general theorems
Let h: A x B — F be a bilinear form, i.e., h satisfies the following
h(ay + ag2,b) = h(a1,b) + h(asg,b)
h(a,by + b2) = h(a,b1) + h(a,bs)
h(ka,b) = h(a, kb) = kh(a,b)
for a,a; € A,b,b; € B,k € F. We denote
radph = {z € Alh(a, B) =0}, radrh = {y € B|h(A,y) =0}.

Taking a basis of A: {uy,u2,..., Uy}, and that of B: {vi,ve,...,v,}, let
Crxn =t (h(ui, vj))mxn, which is referred to as the matrix of h related to
the given bases. Denote r(A) the rank of a matrix A. It is easy to see that
t =: 7(Cpyxp) is invariant with different choice of the basis of A and B. By
linear algebra there exist g € GL(m) and ¢’ € GL(n) such that
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Let (u),ub,...,ul,) = (u1,uz,...,un)g" and (v],...,v") = (v1,...,v,)d,

then
o I. 0
(i) = (g o)-
It follows that radph = (ul,y,...,u;,) and radph = (v ..., v;,).

For each x € L*, let I C L'k be an ideal of L satisfying x([I, I]) = 0.
Denote LX =: {x € L°|x([z,I]) = 0}. Obviously I C LX.
We define a skew-symmetric bilinear form B:

%<1 —F.
(z,y)—x([z,y])

Then we have rad;, B = LX. Let eq,...,e; be a cobasis of LX in L°. By the
discussion above there exists fi,..., fi € I, such that the matrix

X((fla .- '7ft)T(617 s 76?5))

is invertible. In particular, we may choose {e;}!_; and {f;}!_; such that the
matrix is the unit matrix I;.

Definition. Let L be a Lie algebra and M an L —module. P is a subspace
of L. If there is 0 # v € M such that z-v = 0 for all z € P, then v is called
an invariant element of P in M, or simply a P — invariant.

By the definition, if v is a P — invariant, then any nonzero multiple of v also
is.

In the following, since u(L_,x) C u(L,x) is naturally an Ly — module
by Lie product action, we can define the invariants in u(L_,x) for any
subspace P C Lg. If each P — invariant in u(L_, x) is in the form ¢ - 1, for
some 0 # ¢ € F, we say that P has only trivial invariants in u(L_, x).

Lemma 2 ([10, Prop. 2.3]) Let L be a simple restricted Cartan type Lie
algebra. Assume x € L* and ht(x) = h, 2 < h < sp — dpi. (1,12, ..,0p)

is a rearrangement of the sequence (1,2,...,n). Fizing v with 1 < v < n, if
there exist elements g1, 92, ..., gc € Ly, for some k > h, such that the matriz
9
| # |- (0. D D))
Ir

is in the form (A¢|0), where Ay = (a;j) is an invertible v X v matriz, then
every simple uw(L"™1, ) — submodule of ZX(M) is 1— dimensional. Moreover,



if we denote it by Fv, where v = ZM@ D® @ u(s), then for all s, |s| = a,
we have s;; = -+ =8;, = 0.

T

Theorem 1 Let L be a restricted Lie algebra of Cartan type, and x € L*
with ht(x) = h, 2 < h < sp — k. For I and LX given above, assume that
X([LX, LX]) = 0 and assume [LX, LX|P) = 0. Suppose there is a partition of
the set {1,2,...,n}: {1,2,...,n} =TJUJ, INJI=0. Let T'y = (D;]i € T),
and T'y = (D;li € J). If there is a subspace P C LX N Ly, P has only trivial
invariants in w(I'y, x) C u(L_,x), and if there exist elements g1,92,- .., e €
LXN Ly, for some k > h, such that the matrix

g1

92 A .~
X( . (DZ,ZGJ‘D“ZEJ))

G

is in the form (A0), where A = (ai;) is an invertible v X v matriz, then for
every simple u(L°, x) — module M, we have

(1) ZX(M) = u(L, X) ®yro) M is a simple u(L, x) — module.

(2) dimZX(M) = p"*t, where t = codim¥s .

Proof. By [7, Coro. 7.5, p.233], for any simple LX — module V',
Indfx =: u(L°,X]) @) V

is a simple u(L’, x) — module. By [7, Lemma 7.2(1), p.230], every simple
u(LX, x) — module(referred to simply as LX — module in the following) is
1 — dimensional. If Fv is a simple LX — module, it is clear that there is
A € Homp(LX, F), z-v = A(x)v, for all z € LX. Since 2P-v—zlPl.v = x(z)Pv,
we get

NP(z) — Mz) = x(z)P,z € LX.

If 2P = 0, say = € L', then we have A(z) = x(z). It is clear that each
simple LX — module is completely determined by A. We refer to Fv as the
simple LX — module with the linear form .

Let Fv C M be a simple LX — submodule with the linear form A. By [7,
Corollary 7.6(1), p.233],

M = Indfy = w(LP, x|) ®y(rx) Fo.

Therefore we have
ZX(M) 2 (L, X) @y Fo.
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Then (2) follows.

We proceed by showing that F'v is the unique simple LX —submodule of
ZX(M) with linear form A. Which will imply that ZX (M) is simple.

Recall € =: {(a1,...,a,)|0 < a; <p—1,i=1,...,n}. For every a € €,
define |a| = "% | a;. Let ey,...,e; be a cobasis of LX in L%, fi,..., f; be
the elements in I such that x((f1,..., ;)T (e1,...,e)) is the unit matrix.

Let M’ be a simple u(L°, x|) — submodule of ZX(M), and let Fm C M’
be a simple LX — submodule with linear form A. Assume that

m = E caﬁDaeﬁ ® v,
o,B€q |al<s,|BI<s’

where D =: I D" € u(L_,x), ¢’ =: Hﬁzle’?i € u(L%x|), and co 5 € F.
Then by Lemma 2, we have o; = 0 for i € J and |a| = s.
Applying f; to m, we have

X(f) Y. capD’@u
Jal<s, BI<s’

= Z ca,gD” ® fiv + [fi, Z casDe’| @ v

o] <s,[ Bl <8’ o <s,| 8] <!
= Z capD? @ x(fi)v + [fi, Z capDPl @ v
o] <s,| Bl <5’ |l <s,|BI <’

It follows that

© U S capDel v =0,

|| <s, |8l <8’

Note that f; € I C L'*ck. Then [fi, D;] € L°. Since [... [fi,ej,]...e;,] € I,
for any finite sequence ji,...,js, we have

[. .. [fl, ejl] RPN 6]'5]’[) == )\([ .. [fz, 6]'1] PN 6]‘5])’0.

Also we have [f;,e;lv = x([fi,e;])v = 0;v. Then using [7, Lemma 7.1,
p.229], we have

[fia Z Ca,,BDaeﬂ] X v

|| <s,] 8] <

= Z caﬂ/Daeﬂ/ Qv+ Z caﬁﬁiDae’B_ei Qv

lal<s |a|=s,|8]=s"



+ Z Caﬁ'Daeﬁ/ X .
lor|=s,|8]<s'—1
Taking the summation of the terms D% on the left () with |a| = s and
|8 = |§'| — 1, we have

> capBiD% @0 =0.

|af=s,|5|=s"

Then we get 3; =0, 7= 1,...,t. It follows that 8 = 0 for |o| = s.
Taking any x € P, we have

AMz)m = A(z) Z capD’ @v=2-m

|| <s,] 8 <

= Z CaﬁDaeﬁ ® zv + [z, Z CaﬁDaeﬁ] ® v.

|| <s,|B]<s” || <s,] B <8
Then

[z, Z capDPl@v =0.
| <s, |81 <!

Since x € Lo, we have [z,u(L_, x);] C u(L_, x);, where
u(Lo )i = (D € u(L,\)la] = i),

Since B = 0 for |a| = s, we get

Z Caplr, D] @ v+ Z c’aﬁD“eﬁ ®v=0.

lal=s lal<s,|B<t
Thus, Z|a|:s Caol, D ® v = 0. Since v # 0, we have

[z, Z Ca 0D = 0.
|al=s

Since o = 0 for all i € J and [af = s, 3|4 Ca,0D” is @ P — invariant in
u(I'1, x). Then we have s = 0. This implies that m = ¢ ® v, for some ¢ # 0.

Since M = Indfi, we have M’ = M. ie., M is the unique simple
u(LY, x) —submodule of ZX(M). Then ZX(M) is a simple u(L, x) — module.
O

Note that if 3 = {1,2,...,n} and J = (), Lemma 2 is then not used in
the proof above, so we may allow ht(x) < sy + 1. Then we get



Theorem 2 Let L be a restricted Lie algebra of Cartan type, and x €
L*. For I and LX given above, assume that x([LX,LX]) = 0 and assume
[LX, LX)l = 0. If there is a subspace P C LX N Lg, such that P has only
trivial invariants in u(L_, ), then for every simple u(L°, x) — module M,
we have

(1) ZX(M) := u(L, x) ®yro,) M is a simple u(L, x) — module.

(2) dimZX(M) = p"*t, where t = codimTs .

Definition. Let L be a restricted Cartan type Lie algebra. If y € L*
satisfies:

(a) x(L;) # 0 for some [ > 0;

(b) x(L;) =0, for every ¢ > 0 and ¢ # [,

then we say that y is homogeneous with height [ + 1.

If ht(yx) = 2I + 2 for some [ > 0, we take I = L*1. Then it is easy to see
that LX = 0 @ I, where 0 = {x € Lo + - - + Lj|x([z, I]) = 0}.

If x is homogeneous with height 21 4 2, then restricting the bilinear form
B to Ly, X Lojy1—m, m=0,...,1l, we get a bilinear form B,,. Denote

Lt =rady By, = {& € Ly|Bm(x, Lyyy1-m) = 0}.

Then it is easy to see that L;- = {z € L,,|B(z,I) = 0} = rad,B N Ly,
and 0 = @, _ L. So we have LX = @! (L & I. It is easy to check that
X([LX, LX]) = 0. Thus, we have

! l
codimfy = dimL’ — dimLX = Y (dimLy, — dimLy,) = > r(Cp),

m=0 m=0
where ()}, is the matrix of the bilinear form B,,.

From Theorem 1 we have

Corollary 1 Let L be a restricted Lie algebra of Cartan type. x € L* is
homogeneous with height 2142 < s, —dr k. Assume that{1,2,...,n} = JUJ,
INI =0. LetTy = (D;li € 3), and Ty = (D;]i € J). Assume [Li, Lg]lP = 0.
If there is a subspace P C LX N Lg, such that P has only trivial invariants
in u(l'1,x) Cu(L_,x), and if there exist elements g1, ga,...,gc € LX N Ly,
for some k > 20 + 2, such that the matrix

g1

g2 . .~
x( : < (Dy,i € 3|D;,i € 7))

Je
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is in the form (A:|0), where Ay = (a;j) is an invertible v x v matriz, then for
any simple u(L°, x|) — module M, ZX(M) is a simple u(L, x) — module and
dimZX(M) = p™*t, where t = codim®y .

From Theorem 2 we have

Corollary 2 Let L be a restricted Lie algebra of Cartan type. x € L* is
homogeneous with height 21 + 2. If [Lg, L§]P! = 0 and Lg has only trivial
invariants in uw(L_,x), then for any simple u(L°, x|) — module M, ZX(M)
is a simple u(L, x) — module and dimZX(M) = p"*t, where t = codimk; .

4 Applications of Corollary 2, ht(y) =s+1

Let Aut*(W) be the group of the homogeneous restricted automorphisms of
W. Since ad®(tz;D;) = 0 and p > 3, exp(adtz;D;) € Aut*(W). Let E be
the subgroup of Aut*(W) generated by {exp(adtz;D;)|t € F,i # j}. It is
easy to see that a subspace V' C W is a (resp. simple) Wy — module if and
only if it is a (resp. simple) E — module.

Let s = n(p — 1) — 1. Then s is the largest index 4 such that W; # 0.
Using [8, Theorem 2], it is easy to show that Aut*(W);y, = GL(Ws) and
Eyy, = SL(W;). Let x € W* be homogeneous with height s + 1. It is
easy to see that Aut™(W) - xw, = W7 — {0}. We assume first that x is
homogeneous and ({7 D;) = 6;,. In addition, we assume that y(D;) # 0,
for some ¢ < n.

Using notions defined in Section 3, we have

WX = {z e Wlx([z,1]) = 0} = ZT:Wf +1,
=0

where

7y 7nzs—lzn(p—l)—2

2 2 Wit =: {& € Wilx([z, Ws_i]) = 0}.

Therefore, WX is a graded Lie subalgebra of W, It is easy to see that
V(WX W) = 0.

We determine Wit =: {x € Wy|x([z, Ws]) = 0} in the following.

It is easy to check that x;D; € WOL for all j > 4, and 2;D; € WOl
for all i < j # n. Let x = Y ", ajz;D; + 2?2—11 ciziD, € Wi. Then
x([z,2(7D;]) = 0, for all i < n. It follows that ¢; = 0, for all i < n. Then
X([2", aia;i Dy, (7 D,]) = 0, which gives -7 a; + 2a,, = 0.
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We may choose a set of linearly independent solutions:

ay = —2ap,a2 =+ = ap—1 = 0;a2 = =2ap,a1 =+~ =ap—1 =0;....
Therefore W~ has a (n — 1) — dimensional torus

T = <2.C61D1 — anm 2$2D2 — anm ey 2.CUn_1Dn_1 — :L’nDn>
It follows that
We=> Fu;D;@T® Y Fx;Dj.
7> 1<j<n

Then we get dimWOJ- =n?—n.

Lemma 3 W3- has only trivial invariants in u(W_1,x).

Proof. Let m = 7, <, caD* € u(W_1,Xx) be a Wg- — invariant. Taking
2v;D; — x,D,, € WOJ-, i < n, we have

0= [(2x;D; — x,Dy,), m]

=Y ca[2x:D; — 2, Dy, D)

lal<s
=— Z (2a; — ap)cqD*
lal<s
This gives us 2a; = an, i =1,...,n— 1.

Taking i < n with x(D;) # 0, since z,D; € W-, we have

0= [x,Dj,m] = Z (—an)cgD* e

lal<s

Since 0 # D nt¢ € y(W_1, x) unless a,, = 0, we get a,, = 0. Thus, a =0
and m = ¢y € F. O

We determine the codimension of WX in W0 next.
Following Section 3, we define the skew-symmetric bilinear form B:

WOx T — F.
(z,y)—x([z,y])

12



Foreachl<m<r= 21, restricting B to W, x Ws_,,,, we obtain a bilinear

form B,,. T hen Wé =radp B,,. Since x is homogeneous with height s + 1,
by discussions in Section 3,

.,
Codim%j< = Z Codim%ﬁ.
For | € Z*, denote Ny (l) =: card{(a1,...,a,)0 < a; <p—1,>7"  a; =1}

We have n S\ (n+l—tp—1
Na(l) = (-1) <t>( n—1 >

t=0
This is from the last formula on the page

http : | Jwww.mathpages.com/home/kmath337.htm

Then we get dimW; = nN, (I + 1).
For 1 < m < r, denote (), the matrix of B,, related to the standard
basis of W,,, and Ws_,,,. Then C,, is in the form

X(Wm‘Ws—m) -r(bi)Dj | iL‘(b””)Z)n
i<Np(s—m+1),j<n 1<Np (s—m+1)
- _ - _ ‘ —
x(al)Dl 0 | Al

2@Nn(mt1))p |

1'(a1 ) Dn A2 | *

2 @Nn(m+1)) p

It is easy to check that for every (¥ D; € W,,, i < n,

(1) if a; # 0, then x ([ D;, 2 D;]) # 0 only if b = 7 —a+e¢; and j = n;

(2) if a; = 0, 2D D; € radLB

For every x(b)Dn € Ws_m, since s —m > r = @ — 1, there exists
i < n such that b; # O Hence z(7~ b+5i)Di is a well defined element of W,,,
and y([(7"+¢) D, 2®) D, ]) # 0.

Then each row of the matrix A; has at most one nonzero entry, and each
column of A; has at least one nonzero entry. We get r(A;) = the number
of columns of Ay=card{z®D,||b] = s —m +1} = N,(s —m +1). Also it is
easy to see that r(C)) = r(A1) + r(Asg).

We now determine r(Ay). For z(® D,, € W, there exists i < n such that
([ 9 Dy, (7=t D;]) # 0, unless a; = 0, for all i < n. The exception

13



occurs only when m < p — 2, in which case X([x(“)Dn, x(b)Di]) =0, for all
x(b)Di € Ws_m and i < n. Then we have

r(Ag) = card{a € €|z Y D,, € Wy} — d1<po = Np(m + 1) = Sngpo.

Then we have ;
codimyjo =n + Z r(Crm)
m=1
T
=n+ Y [Na(m+1)+ Nu(s —m+1) = Smep2].

m=1
If n = 2, then [Wi-, Wg-]P! = 0. By Corollary 2, for any simple u(W?, x|) —
module M, ZX(M) is a simple u(W, x) — module with dimension

p2n+2:n:1[Nn(m+1)+Nn(s—m+1)—6m<p_2}‘
Theorem 3 Let W = W(n,1) with n = 2, and let x € W* be homoge-
neous with height s + 1. In particular, if there is ® € Aut* (W), such that
X2 (@ D;) = 6; and x®(D;) # 0 for some i < n. Then there are p*~ non-
isomorphic simple u(W, x) — modules, each of them is induced by a simple
module of its mazximal subalgebra and has dimension

p2n+zrm:1[Nn(m+1)+Nn(sfm+1)f5m<p,2}.
Proof. By Lemma 1 we need only to assume that X(l’(T)Di) = §;, and
x(D;) # 0 for some i < n.

Let Fv be a simple WX — module. Recall that W3- has a (n — 1) —
dimensional torus spanned by h; = 22;D; —x, Dy, i=1,...,n—1. Assume
h; - v = A\w. Since hfv — hEp]v = x(hi)Pv =0, X! = X;, or \; € F},. Then we
get

(M, Ap1) € Fg_l.

The (n — 1) — tuple is referred to as the weight of v. We see that as a
WX — module, Fv is completely determined by its weight. Two simple
WX —modules Fv and Fv' are nonisomorphic if they have different weights.
It follows that there are p™ 'distinct isomorphism classes of simple WX —
modules.

Let ZX(M) and ZX(M') be two w(W,x) — modules induced by simple
u(WY, x|) — modules M and M’ respectively. From the proof of Theorem 1
each of them contains a unique simple WX — submodule, denoted Fv and
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Fv' respectively, and each is also induced by the 1 — dimensional simple
WX — submodule. Then it follows that ZX(M) = ZX(M’) if and only if v
and v’ have the same weights. By Corollary 2 ZX(M’) is simple, for any
simple u(W?, x|) —module M’. Therefore there are at least p™~! isomorphic
classes of induced simple u(W, x) — modules.

Let M be a simple u(W, x) — module, 9 C M be a simple u(W, x|) —
submodule, and let Fv C O be a simple WX — submodule. By [7, Corollary
7.6, p.233], 9 is induced by Fv. Then the inclusion map Fv — 91 induces
a u(W, x) — module homomorphism

hi ZX(O) 2 u(W, x) @) Fo — 9

such that h(x®v) = z-v for every x € u(W, x). Since h is obviously nonzero
and both ZX(N') and M are simple u(W, x) —modules, h is an isomorphism.
So each simple u(W, x) —module is isomorphic to some ZX(M). It follows

that there are p"~! pairwise nonisomorphic simple u(W, x) — modules.
]

Remark: All through this paper, we are only working on the homogeneous
characters. But by Lemma 1, if there is ® € Aut; (W) and x € W* such
that x® satisfies Theorem 3 and Theorem 4, then the conclusions of the two
theorems also holds for y, although Y itself need not be homogeneous.

5 Applications of Corollary 1, ht(x) =21+2 < s+1

Definition. ([10, p.413]) Let x € L* and ht(x) = h, 2 < h < s. We define
the characteristic matriz of W associated with x to be AX := y(A), the
matrix A is given by

fi
A— ij (D1, D, ..., Dy),

Ji
where {f1,..., fi} is a standard basis of Wj,. If r(AX) = n, y is referred to

as nonsingular; if r(AX) = v < n, then y is referred to as singular with rank
T.

Definition.([10, p.430]) Let L = W, S, H, K, and let x € L* with ht(x) = h.
For a partition of the set {1,...,n}: {1,...,n} =TUJ, INJ = (), where
I ={iy,...,iz} and J = {izy1,...,0n}, we assume x satisfies the following:
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(a) x((f1,---, f)T(Ds, ..., D;.)) has an invertible t x ¥ minor,
(b) x([Ln, D;]) = 0, for every j € J,

(c) there is a Ly — submodule AC Lj_; with x(A) =0,

(d) there are elements fii1,..., fi €A such that the matrix

B = (bij) == X((fer1s- - fa) (Dicyys -5 Diy))

is invertible. Then it is clear that y is singular with rank ¢v. x is called
A —invertible.

By [10], for every nonsingular or A — invertiable x, ZX(M) is simple and
every simple u(W, x) — module is isomorphic to some ZX(M).
Forl1>0,let2l+2=k(p—1)+7,0<7r<p—1, and let

a=p-1,....,.p—1,r,0...,0).
(k)

By [11], v; = @D, is a maximal vector in Woy1. Woq has only two
maximal vectors v; and vy. Let Vi = wu(Wp)vy and Vo = u(Wpy)ve. If
p1(n+2l+1), Vi and V;, are the only simple W —submodules and Wy 11 =
Vie V.

Let Vi' = {f € Wi, |f(V2) = 0} and Vi = {f € W*|f(1A) = O}. If
p{(n+20+1), both Vi* and V5 are simple Wy — submodules of Wy, and
Wiy = V7 0 Vs

Let {(¥Djla € €,i = 1,...,n} be the standard basis vectors of witt
algebra W. For each (%) D;, we define Cy@p, € Homp(W;, F) (0 <1< s)
by
Crp, (") D;) = S0y

T

In this section, we assume that y is homogeneous with height 2/ 4+ 2 #
(n —1)(p — 1). In particular, we assume that x|w,,,, € Aut*(W)C,ap, -

T

Lemma 4 ([10, Prop. 2.4]) Let Aut(W) be the group of restricted auto-
morphisms of W. Then for every ® € Aut(W), r(AX) = T’(qu))

Lemma 5 If ht(x) =2l+2 > p—1, x is singular with rank n —k — 6, p—1.

Proof. Leta=(p—1,...,p—1,r,0,...,0), 0 <r < p—1. Since ht(x) >
k

p—1,]al > p— 1. Then we have k > 0.
By Lemma 4, we may assume that xw,,,, = C,@p, -

If r < p—1, then it is clear that x([D;, (¥ D;]) = 0, for every i < k and
:E(a)Dj € W2l+2.
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It is also easy to check that
—x (@)D 2T DT (D, ..., Dy))

is the (n — k) X (n — k) unit matrix, then x is singular with rank n — k.
If r = p — 1, then x([D;, 2 D;]) = 0, for every i < k+ 1 and 2(¥D; €
Woito. It is easy to see that

—X((x(a“k“)DkH, . ,a:([”e")Dn)T(DHQ, ...y, Dy))

is the (n —k —1) x (n — k — 1) unit matrix, then y is singular with rank
n—k—1. O

Since x is homogeneous, x is not A — invertible.
We denote

I=w" WX ={z e W°x(z,I]) = 0}.
For any simple u(W?, x|) —module M, We will show that ZX(M) is a simple
u(W, x) —module and compute its dimension for each of the following cases.
51 2l+2>(n—-1)(p—1)

Let gl =:{(a1,a2,...,a,)|-1<a; <p—1,i=1,...,n}. Then we introduce
an A — gradation on W (denoted &) as follows: &(z(*D;) = a — ¢ € A.

Ais a completely ordered set with the order x defined as: (a1,...,a,) <
(bi,...,by) iffay = b1,...,a;-1 = bi_1,a; < b; for some 7 > 1. Then we have
Wi = @4 1(Wi)a, where (Wi)o = () Dila — & = a).

It is easy to see that for every ¢ < j and 0 # v € (W))q, if 2;D; - v # 0,

then
B(x;Dj-v)=a+¢—€ <a=6().

Let 21+2 = (n—1)(p—1)+r,0 <r < p—1. Denotea = (p—1,...,p—1,7) €
A. In this subsection we assume that y is homogeneous with height 2 + 2.
In particular, we assume that x|, , = Cp@p,- We determine I/VOL in the
following.

For the order <, Qﬁ(x(a) D,)) = a—e, is the largest a such that (W;), # 0.
We then have i FagDi © Wst. A similar method as that used in Section
4 applied, we obtain a (n — 1) — dimensional torus of W :

T ={(r—1a;Di + z,Dpli =1,...,n — 1}.
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For each i < j < n,thereisno a € A such that a+€;—€; = a—e€,. Therefore
x;D; € Wi-. For each i < n, it is easy to check that z;D,,-z(@ D; = —2(@ D,,.
Thus, z;D,, ¢ W5-. So we have

Wi =Y Fz;Di+T+ Y FuD;.
7>t <j<n

Then we get dimVVOL =n? —n.
We have a partition of the set {1,...,n}: {1,...,n} = JUJ, where
3=1{1,...,n—1} and J = {n}. Taking 2@t D, € Wy, 4, then we have

x(@@ D, - (Dy,...,Dy1|Dy)) = (0,...,0] — 1).
Let Fl = <DZ|7J: 1,...,71* 1>
Lemma 6 W3- has only trivial invariants in u(T1, x).

Proof. Let m =}, <, . —ocaD® € u(I'1,x) be a Ws- — invariant. Taking
(r—1)a;D; — xn D, € WOL, 1 < n, we have

0=1[((r—1)z;D; — x,Dy,), m]

= Z co|(r — V)i Dy — x Dy, DY

lal<s

=— Z a;(r —1)c,D*
la|<s
This gives us a; = 0, for all i < n. Then we have m = ¢ € F, for some ¢ # 0.
O

For each skew bilinear form (1 < m <)

By i Wi X Wopp1-m — F,
(z,y)—x([zy])

denote its matrix by C,,. It is easy to see that

(1) B (29 Dg, 2 D;) = 0, if 5,5 < n.

(2) For @D, e Wn(s < n), if as = 0 or a, > r, then 29D, e
radr, Bp,; if as # 0 and a,, < r, there is a unique b = @ — a + €, such that
B (29D, 2 D,,) # 0.

(3) For 29D, € Wy, if ap, >+ 1, then ¥ D,, € rady, By,.
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In calculating r(C),), we may exclude the elements of rad;B,, and
radgrB;,. Then we get a nonzero submatrix of C,, with maximal order,
denoted also by C,,.

Using the identity

—( “ >=<a>€F, 1< mn,a; >0,
a — €; a

we have C),, =

X( ‘ ) x(b)Dl x(b)Dn 1 Jf(b)Dn x(b)Dn
bp<r bp=r+1
m(“)Dl 0 . 0 b=a 0
a1#0,an <1 —ate
()
9D, 4 0 oo 0 b=a 0
ap—17£0,an<r 7(14:6"_1
()
z@p, b=a b=a b=a b=a
an<r —a:i—q —a+_5n_1 ) —a+e? _aj_gn
(%) () (-G @)
2D, 0 0 b=a 0
anp=r-+1 —a+tep

In each block row above, say the row determined by u = (¥ D; with a; # 0

and a, < 7, we use the notation b = a indicates that when v = z(® D,, and
—a+e€1

(2)
by <7, X(ulv) # 0 only if b =@ — a + €. In particular, x(ulv) = (%).
On the second last block row, for each row inside indexed by a with
an, =0,b=a—a+ e, has b, = r+ 1. So the last nonzero entry is in the
last block column. Since there exists some i < n, such that a; # 0, there
is a nonzero entry in the same row, but in the first n — 1 block columns.
By applying elementary column operations, the last block column may be

completely eliminated. Similarly the last block row may be eliminated by
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x(.|) z®p, ... z®p. , 20D,
b <r

z@ Dy 0 .. 0 b=a
a1#£0,an<r —a+e€r

@D, 4 0 e 0 b=a
an—17£0,an<r _a—(’_f;_l
2D, b=a - b=a b=a

an<r —a+e€; —aten—1 —a+ten

<n b <r
— l'(a)Di,’L' <n 0 Aq
an <r,a;7#0
.’B(a)Dn A2 *
an<r

Recall our assumption 2l +2 = (n—1)(p—1)+r, 1 <r <p—1. For
every z(® )D € Worp1-m with b, < r, since

1(p—1)+%+1>r,
there is ¢ < n such that b; #£ 0. Let a =a — b+ ¢;. Then a; # 0, a,, < r and
([ Dy, 2" Dy)) # 0.

For each z(® D, Wlth as # 0 and a,, < 7, there is unique b = a — a + ¢,
such that x([z(%) D, 2 D,]) # 0.

So each row of A; has only one nonzero entry and each column of A; has
at least one nonzero entry. It follows that 7(A;) is the number of columns
of Ai= card{b € €|b, < r,|b] = (2l +2) — m}. Also we have r(C;,) =
’I”(Al) + ’I“(AQ).

By a similar discussion, we have

|b\:21+2—m2l+2:n%

r(Ay) = card{a € €la, < r,|a| =m+ 1}.
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For the convenience, we denote for any x € Z+
fr(z) :=card{b € €|b, < r,|b] =z + 1}.

It is easy to see that f.(z) = ._ Np—i(z +1—c). Then we get r(Cp,) =
frm)+ fr2l+1—m). m=1,...,1L

Thus,
l

codim%g( = Z [fr(m)+ fr(2l+1—m)] + n.

m=1

Let n = 2. Then [Wg-, Wg-]P! = 0. Then by Corollary 1, for any simple
w(WO x|) — module M, ZX(M) is a simple u(W, x) — module and

dimZX(M) = pZm=i [Fr(m)+fr 2l+l=m)]+2n,

5.2 20+2<(n—1)p—1)

Let 21 +2 = k(p—1)+7r, 0 < r < p— 1. Following [11], denote a =
(p—1,...,p—=1,7,0,...,0). Then k+ 1 < n. Assume in this subsection
k

that x is homogeneous with height 2] 4+ 2. In particular, we assume that

X‘WQZJrl = Cz(fl)Dn .
Applying a similar method as that used in the last subsection, we have
if r #£0,

W&ZZijDZ‘—i-T—F Z sz-Dj—i— Z inDj;
j>i i<j<k k+1<i<j<n

ifr=0,

We=> FauDi+T+ Y Fa;Dj+ Y FaDj,
G>i i<j<k k+1<i<j<n

where

n—1
T = (2;D; — 2, Dyli =1,..., k) ® F(2p11Dps1 + ranDp) + Y FaD;.
i>k+1

Then we get dim7 =n — 1, and dimWg- = ¢y =:
1
5[(71—1)(n—|—2)—I—k(k—1)+(n—k—2)(n—k—3)]+(n—k—Z)éTZO
=(n—172%4(k+1)2 —kn+ 6—o(n — k —2).
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We have a partition of the set {1,...,n}: {1,...,n} = JUJ, where
3=1{1,...,n—1} and J = {n}. Taking @)D, € Wy 4, then we have

(@@ D,y (Dy,..., Dy 1| Dy)) = (0., 0] — 1),

Let Fl = <DZ|7J: 1,...,71* 1>
Applying a similar argument as that used in the proof of Lemma 6, we
have

Lemma 7 W3- has only trivial invariants in u(T1, x).

For m =1,...,1, we define the bilinear form B,,:

Wi x Worp1—m — F.
(z,y)—x([z,y])

It is easy to check that for z(* D,, € W,,, we have

(1) Bin(2 9 D;, 2" D;) = 0if i < n and j < n.

(2) If i < k and a; = 0, then (¥ D; € rad; B,,.

(3) If a £ @ and ¢ < n, then 2@ D; € rad; By,.

(4) If a < @, and if i < k, a; # 0, then there is unique b = a — a + ¢;,
such that z®D,, € Wy41_,, and Bm(x(“)Di,:v(b)Dn) #0.

(5) If a £ a+ ¢ for some k < i <n, @D, € rad;Bn,.

(6) If a < a + ¢; for some k < i < n, there is unique b = a — a + ¢;, such
that Bp,(2® D, z®) D;) # 0.

Denote the matrix of By, by C,,, and the maximal nonzero submatrix
of Cp,

also by C,,. From the discussion above, using the identity

—( “ ):(“), a; > 0,i <k,
a— € a
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we have

(z®Dy]... |20 Dz Dyry] ... |20 D12 D, | 2D, |...]2®D,)
1

2@ Dy,

2D,

29D,
an—1=1l,a<a+en—1

29D,

an=1,a<a+€p

<a
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—a:i—q
o)

0 0 0 0 b=a O 0

—aii-ek

()
0 0 0 0 x|« 0
0 0 0 0 0 0 b=a 0
—a+en—1
()
b=a b=a b=a 0 0 0 b=a
—a-+te€1 —a+teg —a+€p1 fafren
%) 6 —(.r ) (2)
0 0 b=a 0 0 0 0
—at€gpi
()
0 0 0 b=a 0 0 0
—QT€n—1
_(a—eifl)

0 0 0 0 b=a O 0

7aJten

~(a’e)
where | x [ x| =[b=a—a+e1|0], if agy1 > 05 if apy1 =0, [*[* | =

‘O|b =a—a-+ 6k+1’.

For the block row determined by x(ﬁ)Dgs with a < a, if a, = 0, then
b=a—a+e¢, satisfies b < a+¢, and b, = 1. So each row inside has
the last nonzero entry in the last block column. Since m > 1, there is
i < k41 such that a; #0. Let b=a —a+¢;. Then 20D, e Wart1—m, and
x([ D, 2" D;]) # 0. So at least there is another nonzero entry in the
same row but first k 4+ 1 block columns. Then by applying the elementary
column operation, the last block column of C}, can be eliminated.

Similarly, the last block row of C,, can be completely eliminated by
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elementary row operations. Then C,, has the same rank as the matrix

0 .. 0 0
0 0 0
0 0 0
0 0 0
—a:‘rel —a:&-ek —a+€k+1
) @ ()
0 0 b=a
—a+§k+1
_(afea];_;'_l)
0 0 0

_ 2@ D;
a<a,i<n—1
z@p,
a<a+te;,k+1<i<n

0 b=a 0
fafrel
()
0 b=a 0
—a:‘,—ek
()
0 [« ] x|
0 0 0 b=a
—a+ten—1
()
0 0 0 ..
0 0 0
b=a 0 0
—atep—1
(o)
z®D 0D,
j<n—1 b<a+te;,k+1<i<n
0 A
Ao 0

Each row(column) of A;(Az) has only one nonzero entry.
Foreachb<a+e¢, k+1<i<mn,ifb;=(a);+1, thenlet a =a—b+e;.

We have a < @ and X([x(a)Di,x(b)Dn]) #0. If b < a, since m > 1 there is

i < k+1such that b; < (a@);. Let a = a—b+¢;. Then x([z(¥) D;, 2" D,]) # 0.
So each column of A; has at least one nonzero entry. Then we have

r(Crm) =1(A1) +r(A2), and

r(A1) = the number of columns of A

=card{be €|b| =21+2—-m,b<a+e,

For any z € Z*, denote

k+1<i<n}.

g(x) =card{b € €||bp| =z,b< a+¢€,k+1<i<n}.
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Then we have

g(x) =card{b € €||b| = z,b < a}+ (n—k—1)card{b € €||b| =x—1,b < a}.

T T
:ZNk(:U—c)—l—(n—k—l)ZNk(x—l—c).
c=0 c=0

Therefore we get (A1) = g(2l + 2 — m). By a similar discussion as above,
we will have r(A3) = g(m + 1). It then follows that

r(Cm) = g(m +1) + 921 + 2 = m).
Thus,

1

codim%: =gm+1)+g2l+2—-m), 1<m<l.

Assume [Wg, WOJ-][p] = 0. For example, in the case r # 0, let n = 2,3, or

let n =4 and k = 1,2. Then by Corollary 1, we have that for any simple
w(WP, x|) — module M, ZX(M) is a simple u(W, x) — module and

dlmZX(M) _ pZ%:l(g(m+1)+g(2[+27m))+n27t0+n'

5.3 The conclusion

Theorem 4 Let x € W* be homogeneous with ht(x) = 2l +2 < s+ 1 and
20+2# (n—1)(p—1). Assume [Wit, Ws- P = 0. If there is ® € Aut*(W),
such that Xﬁ%zu = CL@p,, then there are p" 1 pairwise nonisomorphic

simple w(W, x) — modules. Each of them is induced by the simple submodule
of its maximal subalgebra, and has dimension

p %:1(f77;1+f£l+1,m)+2”’ Zf 21 +2> (n - ]‘)(p - 1))
plm=1 (1) +g(22-m)+n’~to+n  rop 1 9 < (n—1)(p—1).

Proof. With the results from the two subsections above, then the proof
follows by applying a similar argument as that used in the proof of Theorem
3. O
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